tanαtanβ=3 tanα+tanβ=-4
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)=-4/-2=2
3cos²(α+β)+sin(α+β)cos(α+β)
=【3cos²(α+β)+sin(α+β)cos(α+β)]/【sin(α+β)²+cos(α+β)²】
=[3+tan(α+β)]/[tan²(α+β)+1]
=5/5
=1
tanαtanβ=3 tanα+tanβ=-4
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)=-4/-2=2
3cos²(α+β)+sin(α+β)cos(α+β)
=【3cos²(α+β)+sin(α+β)cos(α+β)]/【sin(α+β)²+cos(α+β)²】
=[3+tan(α+β)]/[tan²(α+β)+1]
=5/5
=1