解析:
由上述各式可以判断任意四个连续正整数之积与1的和都是某个正整数的平方.
理由简述如下:
假设有4个连续正整数n-1,n,n+1,n+2,其中n是大于等于2的任意正整数
那么:(n-1)×n×(n+1)×(n+2)+1
=(n²-1)(n²+2n)+1
=n⁴+2n³-n²-2n+1
=n⁴+2n³+n²-2n²-2n+1
=(n²+n)²-2(n²+n)+1
=(n²+n-1)²
这就是说对于任意的4个连续正整数n-1,n,n+1,n+2,其中n是大于等于2的任意正整数,
它们的积与1的和是正整数n²+n-1的平方.