一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=f(x)那么函数f(x)就叫做偶函数.关于y轴对称,f(-x)=f(x).
(2)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.关于原点对称,-f(x)=f(-x).
(3)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)和f(-x)=f(x),(x∈D,且D关于原点对称.)那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数.
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数.