(a+1)(a^4+1)-(a^2+1)(a^3+1)=a^5+a^4+a+1-a^5-a^3-a^2-1=a^4-a^3-a^2+a=a^3(a-1)-a(a-1)
=a(a-1)(a^2-1)=a(a-1)^2(a+1)
∵a∈R+ ∴a>0 (a-1)^2≥0 a+1>0
∴(a+1)(a^4+1)-(a^2+1)(a^3+1)≥0 即 (a+1)(a^4+1)≥(a^2+1)(a^3+1)
∵当(a+1)(a^4+1)-(a^2+1)(a^3+1)=a(a-1)^2(a+1)=0时,a=1
∴当且仅当a=1时等号成立