asin2x+bcos2x
=(a^2+b^2)^0.5[(a/(a^2+b^2)^0.5)sin2x+(b/(a^2+b^2)^0.5)cos2x]
=(a^2+b^2)^0.5[cosθsin2x+sinθcos2x]
=(a^2+b^2)^0.5sin(2x+θ)
其中:cosθ=(a/(a^2+b^2)^0.5)
sinθ=(b/(a^2+b^2)^0.5)
asin2x+bcos2x
=(a^2+b^2)^0.5[(a/(a^2+b^2)^0.5)sin2x+(b/(a^2+b^2)^0.5)cos2x]
=(a^2+b^2)^0.5[cosθsin2x+sinθcos2x]
=(a^2+b^2)^0.5sin(2x+θ)
其中:cosθ=(a/(a^2+b^2)^0.5)
sinθ=(b/(a^2+b^2)^0.5)