解题思路:甲追上乙时,位移之差等于s0,根据匀变速直线运动的平均速度公式,抓住位移关系求出追及的时间,根据速度时间公式求出加速度,根据匀变速直线运动位移时间公式求出前进的距离.
(1)设经过时间t,甲追上乙,则根据题意
有vt-[1/2]vt=s0
解得:t=
2s0
v=
2×13.5
9=3s;
(2)根据匀加速直线运动速度时间公式得:
v=at
解得:a=[v/t=
9
3]=3m/s2;
(3)在追上乙的时候,乙走的距离为s
则:s=[1/2]at2
代入数据得到s=
1
2×3×9=13.5m;
答:(1)经历的时间为3s;
(2)加速度为3m/s2;
(3)前进的距离为13.5m.
点评:
本题考点: 匀变速直线运动的位移与时间的关系;匀变速直线运动的速度与时间的关系.
考点点评: 解决本题的关键理清运动过程,运用运动学公式灵活求解.