[1^2+2^2+3^2+...+(n-1)^2]
=n(n-1)(2n-1)/6
=(2n^3-3n^2+n)/6
lim[1^2+2^2+3^2+...+(n-1)^2]/(5n^4)
=lim[(2n^3-3n^2+n)/6]/(5n^4)
=1/30lim(2/n-3/n^2+1/n^3)
=0 (n->+∞)
[1^2+2^2+3^2+...+(n-1)^2]
=n(n-1)(2n-1)/6
=(2n^3-3n^2+n)/6
lim[1^2+2^2+3^2+...+(n-1)^2]/(5n^4)
=lim[(2n^3-3n^2+n)/6]/(5n^4)
=1/30lim(2/n-3/n^2+1/n^3)
=0 (n->+∞)