已知二次函数f(x)=ax2+bx+c的图象与直线y=25有公共点,且不等式ax2+bx+c>0的解是-[1/2]<x<

1个回答

  • 解题思路:根据题意,f(x)=ax2+bx+c的图象与直线y=25有公共点,即ax2+bx+c-25=0有解,可得△=b2-4a(c-25)≥0,再根据不等式ax2+bx+c>0的解是-[1/2]<x<[1/3],结合一元二次不等式的解集的性质,可得b、c与a的关系,代入△=b2-4a(c-25)≥0中,可得答案.

    依题意ax2+bx+c-25=0有解,故△=b2-4a(c-25)≥0,

    又不等式ax2+bx+c>0的解是-[1/2]<x<[1/3],

    ∴a<0且有-[b/a]=-[1/6],[c/a]=-[1/6].

    ∴b=[1/6]a,c=-[1/6]a.

    ∴b=-c,代入△≥0得c2+24c(c-25)≥0.

    ∴c≥24.故得a、b、c的取值范围为a≤-144,b≤-24,c≥24.

    点评:

    本题考点: 一元二次不等式与二次函数.

    考点点评: 二次方程ax2+bx+c=0,二次不等式ax2+bx+c>0(或<0)与二次函数y=ax2+bx+c的图象联系比较密切,要注意利用图象的直观性来解二次不等式和二次方程的问题.