a+2b+6=0,x+2y=1,
两式相加得(a+x)+2(b+y)+5=0
即a+x=-5-2(b+y),代入求证式子
(a+x)²+(b+y)²
=[5+2(b+y)]²+(b+y)²
=5(b+y)²+20(b+y)+25
=5[(b+y)²+4(b+y)+4+1]
=5[(b+y+2)²+1]
≥5
即原命题得证
a+2b+6=0,x+2y=1,
两式相加得(a+x)+2(b+y)+5=0
即a+x=-5-2(b+y),代入求证式子
(a+x)²+(b+y)²
=[5+2(b+y)]²+(b+y)²
=5(b+y)²+20(b+y)+25
=5[(b+y)²+4(b+y)+4+1]
=5[(b+y+2)²+1]
≥5
即原命题得证