曲线C的方程可以化为(x-2)²+(y-3)²=9,
它表示以C(2,3)为圆心,r=3为半径的圆.
∵圆心C到直线 3x+4y+2=0的距离为
d=|3×2+4×3+2|/根号(3²+4²)=20/5=4>r
∴直线与圆相离.
由图像知,圆C上的点到直线的最小距离为 d-r=4-3= 1.
曲线C的方程可以化为(x-2)²+(y-3)²=9,
它表示以C(2,3)为圆心,r=3为半径的圆.
∵圆心C到直线 3x+4y+2=0的距离为
d=|3×2+4×3+2|/根号(3²+4²)=20/5=4>r
∴直线与圆相离.
由图像知,圆C上的点到直线的最小距离为 d-r=4-3= 1.