∵sinA+sinB+sinC
=(sinA+sinB)+sin(180°-A-B)
=2sin[(A+B)/2]cos[(A-B)/2]+sin(A+B)
=2sin[(A+B)/2]cos[(A-B)/2]+2sin[(A+B)/2]cos[(A+B)/2]
=2sin[(A+B)/2]{cos[(A-B)/2]+cos[(A+B)/2]}
=2sin[(180°-C)/2]×2cos(A/2)cos(B/2)
=4cos(A/2)cos(B/2)cos(C/2).
显然有:S(△ABC)=(1/2)r(a+b+c)=(1/2)absinC,
由正弦定理,有:a=2RsinA、b=2RsinB、c=2RsinC,
∴r(2RsinA+2RsinB+2RsinC)=(2RsinA)(2RsinB)sinC,
∴r(sinA+sinB+sinC)=2RsinAsinBsinC,
∴4r[cos(A/2)cos(B/2)cos(C/2)]
=16Rsin(A/2)cos(A/2)sin(B/2)cos(B/2)sin(C/2)cos(C/2),
∴r=4Rsin(A/2)sin(B/2)sin(C/2).······①
∵cosA+cosB+cosC
=2cos[(A+B)/2]cos[(A-B)/2]+1-2[sin(C/2)]^2
=1+2cos[(A+B)/2]cos[(A-B)/2]-2{sin[(180°-A-B)/2]}^2
=1+2cos[(A+B)/2]cos[(A-B)/2]-2{cos[(A+B)/2]}^2
=1+2cos[(A+B)/2]{cos[(A-B)/2]-cos[(A+B)/2]}
=1+2cos[(180°-C)/2]×2sin(A/2)sin(B/2)
=1+4sin(A/2)sin(B/2)sin(C/2),
∴cosA+cosB+cosC-1=4sin(A/2)sin(B/2)sin(C/2),
∴R(cosA+cosB+cosC-1)=4Rsin(A/2)sin(B/2)sin(C/2).······②
由①、②,得:r=4Rsin(A/2)sin(B/2)sin(C/2)=R(cosA+cosB+cosC-1).