求证三角形一等式r=4Rsin(A/2)sin(B/2)sin(C/2)=R(cosA+cosB+cosC-1)r是内切

2个回答

  • ∵sinA+sinB+sinC

    =(sinA+sinB)+sin(180°-A-B)

    =2sin[(A+B)/2]cos[(A-B)/2]+sin(A+B)

    =2sin[(A+B)/2]cos[(A-B)/2]+2sin[(A+B)/2]cos[(A+B)/2]

    =2sin[(A+B)/2]{cos[(A-B)/2]+cos[(A+B)/2]}

    =2sin[(180°-C)/2]×2cos(A/2)cos(B/2)

    =4cos(A/2)cos(B/2)cos(C/2).

    显然有:S(△ABC)=(1/2)r(a+b+c)=(1/2)absinC,

    由正弦定理,有:a=2RsinA、b=2RsinB、c=2RsinC,

    ∴r(2RsinA+2RsinB+2RsinC)=(2RsinA)(2RsinB)sinC,

    ∴r(sinA+sinB+sinC)=2RsinAsinBsinC,

    ∴4r[cos(A/2)cos(B/2)cos(C/2)]

    =16Rsin(A/2)cos(A/2)sin(B/2)cos(B/2)sin(C/2)cos(C/2),

    ∴r=4Rsin(A/2)sin(B/2)sin(C/2).······①

    ∵cosA+cosB+cosC

    =2cos[(A+B)/2]cos[(A-B)/2]+1-2[sin(C/2)]^2

    =1+2cos[(A+B)/2]cos[(A-B)/2]-2{sin[(180°-A-B)/2]}^2

    =1+2cos[(A+B)/2]cos[(A-B)/2]-2{cos[(A+B)/2]}^2

    =1+2cos[(A+B)/2]{cos[(A-B)/2]-cos[(A+B)/2]}

    =1+2cos[(180°-C)/2]×2sin(A/2)sin(B/2)

    =1+4sin(A/2)sin(B/2)sin(C/2),

    ∴cosA+cosB+cosC-1=4sin(A/2)sin(B/2)sin(C/2),

    ∴R(cosA+cosB+cosC-1)=4Rsin(A/2)sin(B/2)sin(C/2).······②

    由①、②,得:r=4Rsin(A/2)sin(B/2)sin(C/2)=R(cosA+cosB+cosC-1).