f'(x)=wAcos(wx+φ)
由图可知wA=2
T=4π
因此w=1/2
A=4
f'(x)图是由2cos(1/2x)向左平移π/2得来,因此f'(x)=2cos(1/2(x+π/2))=2cos(1/2x+π/4)
则f(x)=4sin(1/2x+π/4)
由图可知f'(x)单调递减区间为[4kπ-π/2,4kπ+3π/2]
f'(x)=wAcos(wx+φ)
由图可知wA=2
T=4π
因此w=1/2
A=4
f'(x)图是由2cos(1/2x)向左平移π/2得来,因此f'(x)=2cos(1/2(x+π/2))=2cos(1/2x+π/4)
则f(x)=4sin(1/2x+π/4)
由图可知f'(x)单调递减区间为[4kπ-π/2,4kπ+3π/2]