一道简单的三角比证明题求证:4sin[(b-c)/2]sin[(a-b)/2]sin[(c-a)/2]=sin(b-c)

2个回答

  • 令(b-c)/2=x (a-b)/2=y

    则x+y=(a-c)/2 (c-a)/2=-x-y

    4sin[(b-c)/2]sin[(a-b)/2]sin[(c-a)/2]=sin(b-c)+sin(a-b)+sin(c-a)

    即4sinxsinysin(-x-y)=sin2x+sin2y+sin(-2x-2y)

    4sinxsinysin(x+y)=sin(2x+2y)-sin2x-sin2y

    sin(2x+2y)-sin2x-sin2y

    =sin2xcos2y+cos2xsin2y-sin2x-sin2y

    =sin2x(cos2y-1)+sin2y(cos2x-1)

    =-2sin2x(siny)^2-2sin2y(sinx)^2

    4sinxsinysin(x+y)

    =4sinxsiny(sinxcosy+cosxsiny)

    =4(sinx)^2sinycosy+4(siny)^2sinxcosx

    =2(sinx)^2sin2y+2(siny)^2sin2x

    sin(2x+2y)-sin2x-sin2y=-4sinxsinysin(x+y)