sin(π/4+α)sin(π/4-α)=1/16
-[cos(π/4+α+π/4-α)-cos(π/4+α-π/4+α)]/2=1/16
-[cosπ/2-cos2α]/2=1/16
cosπ/2-cos2α=-1/8
0-cos2α=-1/8
cos2α=1/8
α∈(π/2,π)
2α∈(π,2π)
所以2α∈(3π/2,2π)
sin2α=-√63/8
sin4α
=2sin2α*cos2α
=2*(-√63/8)*1/8
=-√63/32
sin(π/4+α)sin(π/4-α)=1/16
-[cos(π/4+α+π/4-α)-cos(π/4+α-π/4+α)]/2=1/16
-[cosπ/2-cos2α]/2=1/16
cosπ/2-cos2α=-1/8
0-cos2α=-1/8
cos2α=1/8
α∈(π/2,π)
2α∈(π,2π)
所以2α∈(3π/2,2π)
sin2α=-√63/8
sin4α
=2sin2α*cos2α
=2*(-√63/8)*1/8
=-√63/32