如图所示,l1和l2分别表示一种白炽灯和一种节能灯的费用y(元)与照明时间x(小时)的函数关系图象,假设两种灯的使用寿命

1个回答

  • 解题思路:(1)根据l1经过点(0,2)、(500,17),得方程组解之可求出解析式,同理l2过(0,20)、(500,26),易求解析式;

    (2)费用相等即y1=y2,解方程求出时间;

    (3)求出交点坐标,结合函数图象回答问题.

    (1)设L1的解析式为y1=k1x+b1,L2的解析式为y2=k2x+b2

    由图可知L1过点(0,2),(500,17),

    2=b1

    17=500k1+b1

    ∴k1=0.03,b1=2,

    ∴y1=0.03x+2(0≤x≤2000),

    由图可知L2过点(0,20),(500,26),

    同理y2=0.012x+20(0≤x≤2000);

    (2)若两种费用相等,

    即y1=y2

    则0.03x+2=0.012x+20,

    解得x=1000,

    ∴当x=1000时,两种灯的费用相等;

    (3)时间超过1000小时,故前2000h用节能灯,剩下的500h,用白炽灯.

    点评:

    本题考点: 一次函数的应用.

    考点点评: 此题旨在检测一次函数解析式的待定系数法及其与方程、不等式的关系.结合函数图象解不等式更具直观性,对方案决策很有帮助,这就是数形结合的优越性.

相关问题