1.Sn=n*an-n(n-1)
Sn-1=(n-1)an-1-(n-2)(n-1) n>1
前式减后式
an=n*an-(n-1)an-1-2(n-1)
(n-1)*an-(n-1)an-1-2(n-1)=0
(n-1)(an-an-1-2)=0 n>1
an-an-1=2 n>1
数列(an)是公差为2的等差数列
an=1/2+2(n-1)=2n-3/2
S1=a1=1/2
S2=1/2+1/2+2=3
S3=1/2+1/2+2+1/2+4=15/2
Sn=(1/2+2n-3/2)n/2
=(2n-1)n/2
2.Fn(x)=(Sn/n)x^(n+1)=nx^(n+1)/(n+1)
F'n(p)=n(n+1)p^n/(n+1)=np^n=Bn
若p=1,则Bn=n,则Tn=n(n+1)/2;
若p≠1,这是个很熟悉的关系式,利用错位相减:
Tn=p+2p²+……+np^n
pTn=p²+2p^3+……+np^(n+1)
两式相减=(p-1)Tn=np^(n+1)-(p+p²+……+p^n)=np^(n+1)-p(1-p^n)/(1-p)
Tn=[np^(n+1)-p(1-p^n)/(1-p)]/(p-1)