琴生贝努里为你
证明:f在c连续,若f(c)>0,存在一个数&>0,使得对于任何x属于(c-&,c+&),有f(x)>0.
1个回答
相关问题
-
设f(x)在【0,1】上连续,(0,1)可导.f(0)=0 ,f(1)=1.证明:存在C属于(0,1)使f(c)=1-c
-
高数题...设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明存在一点c∈(0,1),使得2f(c)
-
f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=0,证明在(0,1)内存在一点c,使得f(c)+(1-e^-
-
设f(x)在(-∞,∞)三阶可导,证:存在c∈(-∞,∞),使得f(c)f'(c)f''(c)f'''(c)≥0
-
设f(x)在(a,b)上连续,且f(a)=f(b),证明:存在点c属于(a,b)使得f(C)=f(c+b-a/2)
-
一道高数证明题设函数f(x)在[a,b]上可导,f(a)=f(b)=0,并存在一点c属于(a,b),使得f(c)>0,证
-
微积分证明题 设函数f(x)在[0,1]上连续,且值域是[0,1],如何证明则在(0,1)内必有一点c,使得f(c)=c
-
若f(x)在[0,a]上连续,在(0,a)内可到,a>0,且f(0)=1,f(a)=0.证明至少存在一点C属于(0,a)
-
设f(x)在闭区间[0,1]上连续,f(0)=f(1),证明存在x0属于[0,n-1/n],使得 f(x0)=f(x0+
-
f(x)在(a,b)可微,c为一定点,f(c)>0,f(x-c)>=0,证明f(x)>0