解题思路:根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.
∵AB=AC,
∴△ABC是等腰三角形;
∵AB=AC,∠A=36°,
∴∠ABC=∠ACB=72°,
∵BD、CE分别是∠ABC、∠BCD的角平分线,
∴∠ABD=∠DBC=[1/2]∠ABC=36°,∠BCE=∠ACE=[1/2]∠ACB=36°,
∴∠DBC=∠BCE,∠CED=∠DBC+∠BCE=36°+36°=72°,
∠A=∠ABD,∠BDC=180°-∠DBC-∠BCD=180°-72°-36°=72°,
∴△EBC、△ABD是等腰三角形;
∠BDC=∠BCD,
∠CED=∠CDE,
∴△BCD、△CDE是等腰三角形,
∴图中的等腰三角形有5个.
故答案为:5.
点评:
本题考点: 等腰三角形的判定与性质.
考点点评: 此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形的角平分线等,解题时要找出所有的等腰三角形,不要漏了.