sin B sinC= (-1/2)[cos(B+C)-cos(B-C)]=(-1/2)[-cosA-cos(B-C)]=(1/2)[cosA+cos(B-C)],
(cos(A/2)) ^2=(1+cosA)/2,
则
[cosA+cos(B-C)]/2 =(1+cosA)/2;
即cosA+cos(B-C) =1+cosA;
即cos(B-C) =1;
则B-C=0; B=C;
所以,△ABC是等腰三角形.
sin B sinC= (-1/2)[cos(B+C)-cos(B-C)]=(-1/2)[-cosA-cos(B-C)]=(1/2)[cosA+cos(B-C)],
(cos(A/2)) ^2=(1+cosA)/2,
则
[cosA+cos(B-C)]/2 =(1+cosA)/2;
即cosA+cos(B-C) =1+cosA;
即cos(B-C) =1;
则B-C=0; B=C;
所以,△ABC是等腰三角形.