解题思路:根据等式,先考虑n=k时,等式左边的结论,再写出n=k+1时,等式左边的结论,比较可得答案.
n=k+1时等式左边与n=k时的等式左边的差,即为n=k+1时等式左边增加的项
由题意,n=k时,等式左边=(k+1)+(k+2)+…+(k+k)
n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1)
比较可得n=k+1时等式左边增加的项为3k+2
故选C.
点评:
本题考点: 数学归纳法.
考点点评: 本题的考点是数学归纳法,主要考查数学归纳法的第二步,在假设的基础上,n=k+1时等式左边增加的项,关键是搞清n=k时,等式左边的规律,从而使问题得解.