平面直角坐标系中,以P(2r,0)为圆心,r为半径做圆P

1个回答

  • (1) 设切线斜率为k,方程为y = kx,kx - y = 0

    圆P的圆心P为(2r,0),P与 kx - y = 0的距离为圆半径r:

    r = |2rk -0|/√(k² + 1)

    r²(k²+1) = 4r²k²

    3k² = 1

    k = ±√3/3

    切线方程为y = ±(√3/3)x

    (2) 圆方程为(x-2r)² + y² = r²,A(r,0),B(3r,0)

    圆P与直线X=5/2不相交,r > 5/2或 3r < 5/2 (r < 5/6)

    y=ax^2+bx+c过A,B两点:

    ar² + br + c = 0 (1)

    9ar² + 3br + c = 0 (2)

    (2)-(1):b = -4ar (3)

    c = -ar² - br = -ar² + 4ar² = 3ar² (4)

    y=ax^2+bx+c的顶点在圆P上,显然顶点为圆上纵坐标最大C(2r,r)或最小处D(2r,-r).

    (a) y=ax^2+bx+c过C(2r,r)

    r = 4ar² + 2br + c = 4ar² -2r*4ar + 3ar² = - ar²

    a = -1/r

    (b) y=ax^2+bx+c过C(2r,r)

    -r = 4ar² + 2br + c = 4ar² -2r*4ar + 3ar² = - ar²

    a = 1/r

    直线Y= -ax+c = -ax + 3ar² = 0,x = 3r²,M(3r²,0);

    当M在线段PB上运动时2r ≤ 3r² ≤ 3r,2/3 ≤ r ≤ 1

    a = -1/r时, -3/2≤ a ≤ -1

    a = 1/r 时,1 ≤ a ≤ 3/2