首先必须清楚一点:无限小和0完全是两码事.所以"有限个无限小量相乘=0"这句话本来就是错的.你可以先从极限的定义理解起.
好的,你既然对题目进行了修改,那我也略微谈下我的理解,你知道无穷的比较原则吗?(对于实数)有限个无穷大相乘还是无穷大,只有当无穷个无穷大相乘才比一个无穷大大.这个的证明也挺有意思,不过比较长,我就说个思路,你看tanx的图象,是一个有限域和无限域的映射,一一对应,以次证明两个无穷相乘~一个无穷,然后对任何有限个无穷都进行下放,从而进行证明.
无限小的情况应该也类似,你可以不负责任的理解为无穷大的倒数,这样可能容易理解些.
既然无穷个无穷大相乘不再是无穷大,那么同理无限个无限小量相乘,就不一定=无限小.
至于举例,实在抱歉,本人学疏才浅实在举不出,但认为不会是一般意义上的概念.