设函数f(x)=x·sinx证明:f(x+2kπ)-f(x)=2kπ·sinx
1个回答
f(x+2kπ)-f(x)
=(x+2kπ)sin(x+2kπ)-xsinx
=(x+2kπ)sinx-xsinx
=xsinx+2kπsinx-xsinx
=2kπsinx
相关问题
f(x+π)=f(x)+sinx,证明f(x)周期为2π.
设函数f(x)=sinx,则[f(π/2)]'
设函数 f(x)={ sinx x≥0 ,求f(0),f(π/2),f(-π/2) x²+1 x<0
设f(x)满足f(-sinx)+3f(sinx)=4sinx•cosx(|x|≤[π/2]).
设f(x)满足f(-sinx)+3f(sinx)=4sinx•cosx(|x|≤[π/2]).
设函数f(x)=tanx-8sinx,其中x∈(−π2,π2).
设函数f(x)=(2cosx+asinx)sinx+cos^2x(x∈R),且f(π/2)=f(π/4)
设函数f(x)=(2cosx+asinx)sinx+cos^2 x(x∈R),且f(π/2)=f(π/4)
设函数f(x)的导数为f′(x),且f(x)=f′(π2)sinx+cosx,则f′(π4)= ___ .
设函数f(x)在R内有定义且满足f(x+π)=f(x)+sinx,证明:函数f(x)是以周期2π的周期函数