特征向量是有无穷多的(最简单的例子就是,若ξ是一个特征向量,则kξ(k≠0)也是一个特征向量),只是说特征向量空间的维数总和不超过矩阵的阶数.唯一的对角矩阵是正交相似的对角矩阵,方法叫做施密特正交化法.
关于一元高次方程的解是不会超过最高次的,可以用反证法,若有n+1个实根,则会导致方程的次数至少是n+1次的(不妨设这n+1个实根为a1,a2,…,an+1,则(x-a1)(x-a2)…(x-an+1)是这个多项式的因子)
特征向量是有无穷多的(最简单的例子就是,若ξ是一个特征向量,则kξ(k≠0)也是一个特征向量),只是说特征向量空间的维数总和不超过矩阵的阶数.唯一的对角矩阵是正交相似的对角矩阵,方法叫做施密特正交化法.
关于一元高次方程的解是不会超过最高次的,可以用反证法,若有n+1个实根,则会导致方程的次数至少是n+1次的(不妨设这n+1个实根为a1,a2,…,an+1,则(x-a1)(x-a2)…(x-an+1)是这个多项式的因子)