证明:
∵E是DC中点
∴DC=2DE
又ABCD为平行四边形,AB=2BC
∴DC=2DA=2BC
∴DE=DA=EC
∴∠DAE=∠DEA
又AD∥BF
∴∠DAE=∠F
又∠DEA=∠CEF
∴∠F=∠CEF
∴CE=CF
∴BF=2BC=AB
∴∠F=∠FAB
证明:
∵E是DC中点
∴DC=2DE
又ABCD为平行四边形,AB=2BC
∴DC=2DA=2BC
∴DE=DA=EC
∴∠DAE=∠DEA
又AD∥BF
∴∠DAE=∠F
又∠DEA=∠CEF
∴∠F=∠CEF
∴CE=CF
∴BF=2BC=AB
∴∠F=∠FAB