设二个交点的坐标分别是:B(X1,Y1),C(X2,Y2),AB的中点坐标是:P(X,Y)
那么有:
X1^2+Y1^2=1.[1]
X2^2+Y2^2=1.[2]
X1+X2=2X
Y1+Y2=2Y
[1]-[2]:
(X1+X2)(X1-X2)+(Y1-Y2)(Y1+Y2)=0
2X(X1-X2)+2Y(Y1-Y2)=0
X/Y=-(Y1-Y2)/(X1-X2)
又直线AP的斜率K=(Y-0)/(X-2)=(Y1-Y2)/(X1-X2)
所以有:X/Y=-Y/(X-2)
X(X-2)=-Y^2
即轨迹方程是:x^2+y^2-2x=0