y=x(x^2+1)^(-1/2)
所以y'=1*(x^2+1)^(-1/2)+x*(-1/2)*(x^2+1)^(-1/2-1)*(x^2+1)'
=(x^2+1)^(-1/2)-x^2*(x^2+1)^(-3/2)
=1/(x^2+1)^(1/2)-x^2/[(x^2+1)(x^2+1)^(1/2)]
=(x^2+1-x^2)/[(x^2+1)(x^2+1)^(1/2)]
=1/[(x^2+1)(x^2+1)^(1/2)]
y=x(x^2+1)^(-1/2)
所以y'=1*(x^2+1)^(-1/2)+x*(-1/2)*(x^2+1)^(-1/2-1)*(x^2+1)'
=(x^2+1)^(-1/2)-x^2*(x^2+1)^(-3/2)
=1/(x^2+1)^(1/2)-x^2/[(x^2+1)(x^2+1)^(1/2)]
=(x^2+1-x^2)/[(x^2+1)(x^2+1)^(1/2)]
=1/[(x^2+1)(x^2+1)^(1/2)]