(1)证明:∵
CD =
BD ,
∴CD=BD,
∵∠CDB=60°,
∴△BCD是等边三角形,
∴
CD =
BC ,
∴∠CAD=∠BAC,即AC是∠DAB的平分线;
(2)连接BD,在线段CE上取点F,使得EF=AE,连接DF,
∵DE⊥AC,
∴DF=DA,
∴∠DFE=∠DAE,
∵
CD =
BD ,
∴CD=BD,∠DAC=∠DCB,
∴∠DFE=∠DCB,
∵四边形ABCD是圆的内接四边形,
∴∠DAB+∠DCB=180°,
∵∠DFC+∠DFE=180°,
∴∠DFC=∠DAB,
∵在△CDF和△BDA中,
∠DFC=∠DAB
∠DCF=∠DBA
CD=BD
∴△CDF≌△BDA(AAS),
∴CF=AB=5,
∵AC=7,AB=5,
∴AE=
1
2 AF=
1
2 (AC-CF)=1.