tan2(a-B)
=2tan(a-B)/(1-tan²(a-B))
=2*(1/2)/(1-1/4)
=4/3,
tan(2a -B)
=tan[2(a-B)+B]
=tan2(a-B)tanB/(1-tan2(a+B)tanB)
=[4/3+(-1/7)]/[1-(4/3)(-1/7)]
=1,
由于a属于(0,π/4),2a属于(0,π/2)
B属于(0,π),由于tanB<0,所以B属于(π/2,π)
则2a-B属于(-π,0),
所以2a -B =-3π/4.
tan2(a-B)
=2tan(a-B)/(1-tan²(a-B))
=2*(1/2)/(1-1/4)
=4/3,
tan(2a -B)
=tan[2(a-B)+B]
=tan2(a-B)tanB/(1-tan2(a+B)tanB)
=[4/3+(-1/7)]/[1-(4/3)(-1/7)]
=1,
由于a属于(0,π/4),2a属于(0,π/2)
B属于(0,π),由于tanB<0,所以B属于(π/2,π)
则2a-B属于(-π,0),
所以2a -B =-3π/4.