∵α,β是都是锐角 ==>00
∵cosα=1/7,cos(α+β)=-11/14
∴sinα=√[1-(cosα)^2]=4√3/7
sin(α+β)=√[1-(cos(α+β))^2]=5√3/14
故cosβ=cos[(α+β)-α]
=cosαcos(α+β)+sinαsin(α+β)
=(1/7)(-11/14)+(4√3/7)(5√3/14)
=1/2.
∵α,β是都是锐角 ==>00
∵cosα=1/7,cos(α+β)=-11/14
∴sinα=√[1-(cosα)^2]=4√3/7
sin(α+β)=√[1-(cos(α+β))^2]=5√3/14
故cosβ=cos[(α+β)-α]
=cosαcos(α+β)+sinαsin(α+β)
=(1/7)(-11/14)+(4√3/7)(5√3/14)
=1/2.