化简:[1+2sin(α+2π)*cos(α-2π)]/[sin(α+4π)+cos(α+8π)]
1个回答
诱导公式
原式=(1+2sincosα)/(sinα+cosα)
=(sinα+cosα)²/(sinα+cosα)
=sinα+cosα
=√2sin(α+π/4)
相关问题
化简[sin(π/2-α)cos(π/2-α)]/cos(π+α)-[sin(π-α)cos(π/2-α)]/sin(π
化简[sin(π/2+α)*cos(π/2-α)]/cos(π+α)+[sin(π-α)*cos(π/2+α)]/sin
化简:(1)cos(α+π)sin(−α)cos(−3π−α)sin(−α−4π)(2)cos(α−π2)sin(5π2
化简sin(2π−α)cos(π+α)cos(π−α)sin(3π−α)sin(−α−π)=−1sinα−1sinα.
化简(1)sin(α+π)cos(-α)sin(-α-π) (2)sin³(-α)cos(2π+α)tan(-
(1)化简:sin(2π−α)cos(π+α)cos(3π2+α)cos(13π2−α)cos(π−α)sin(3π−α
化简(1)tan(π−α)cos(2π−α)sin(−α+3π2)cos(−α−π)sin(−π−α).
化简:(Ⅰ)sin(α−2π)cos(α+π)tan(α−99π)cos(π−α)sin(3π−α)sin(−α−π);
化简cos(π+α)cos(π2+α)cos(11π2−α)cos(π−α)sin(−π−α)sin(9π2+α)的结果
sin{π-α}cos{2π-α}tan{-α+π}/sin{π+α}化简