是
loga^b*logb^a
=(logc^b/logc^a)*(logc^a/logc^b)
=1
loga^b×logb^c×logc^a
=(logm^b/logm^a)*(logm^c/logm^b)*(logm^a/logm^c)
=1
利用换底公式
loga^b
=logc^b/logc^a
是
loga^b*logb^a
=(logc^b/logc^a)*(logc^a/logc^b)
=1
loga^b×logb^c×logc^a
=(logm^b/logm^a)*(logm^c/logm^b)*(logm^a/logm^c)
=1
利用换底公式
loga^b
=logc^b/logc^a