15题
(1)因为P,Q分别为 AE,AB的中点,
所以PQ//EB.又DC//EB,因此PQ//DC,
从而PQ//平面ACD.………………………………5分
(2)如图,连接CQ, DP.
因为Q为AB的中点,且AC
=BC,所以CQ⊥ AB.
因为DC⊥ 平面ABC,EB//DC,
所以EB⊥ 平面ABC.
因此CQ⊥ EB
故CQ⊥ 平面ABE.
由(1)有PQ//DC,又PQ=
EB=DC,
所以四边形CQPD为平行四边形,
故DP// CQ ,
因此DP ⊥平面ABE,∠ DAP为AD和平面ABE所成的角.
在Rt ∆DPA中,AD=
,DP=1,
sin ∠ DAP=
因此AD和平面ABE所成角的的正弦值为
………………12分
略