根据题中给定的条件:
令x=1,y=0,有f(1/2)=f(1)sina+(1-sina)f(0)=sina
令x=1/2,y=0,有f(1/4)=f(1/2)sina+(1-sina)f(0)=sin²a
令x=1,y=1/2,有f(3/4)=f(1)sina+(1-sina)f(1/2)=2sina-sin²a
令x=3/4,y=1/4,有f(1/2)=f(3/4)sina+(1-sina)f(1/4)=3sin²a-2sin³a
∴3sin²a-2sin³a=sina
考虑到a∈(0,π/2),那么sina∈(0,1),解得sina=1/2
(1) f(1/2)/f(1/4)=sina/sin²a=2
(2) a=π/6
(3) g(x)=sin(π/6-2x)
=sin(π/6)cos(2x)-cos(π/6)sin(2x)
=(1/2)(2cos²x-1)-(√3/2)(2sinx•cosx)
=cos²x-√3•sinx•cosx-1/2