(2013•闵行区一模)设数列{an}的各项均为正数,前n项和为Sn,已知4Sn=a2n+2an+1(n∈N*)

1个回答

  • (1)∵4Sn=

    a2n+2an+1,

    ∴当n≥2时,4Sn−1=

    a2n−1+2an−1+1.

    两式相减得4an=

    a2n−

    a2n−1+2an−2an−1,

    ∴(an+an-1)(an-an-1-2)=0

    ∵an>0,∴an-an-1=2,

    又4S1=

    a21+2a1+1,∴a1=1

    ∴{an}是以a1=1为首项,d=2为公差的等差数列.

    ∴an=a1+(n-1)d=2n-1;

    (2)由(1)知Sn=

    (1+2n−1)n/2=n2,

    假设正整数k满足条件,

    则(k22=[2(k+2048)-1]2

    ∴k2=2(k+2048)-1,

    解得k=65;

    (3)证明:由Sn=n2得:Sm=m2,Sk=k2,Sp=p2

    于是

    1

    Sm+

    1

    Sp−

    2

    Sk=

    1

    m2+

    1

    p2−

    2

    k2=

    k2(p2+m2)−2m2p2

    m2p2k2]

    ∵m、k、p∈N*,m+p=2k,

    k2(p2+m2)−2m2p2

    m2p