(1)∵4Sn=
a2n+2an+1,
∴当n≥2时,4Sn−1=
a2n−1+2an−1+1.
两式相减得4an=
a2n−
a2n−1+2an−2an−1,
∴(an+an-1)(an-an-1-2)=0
∵an>0,∴an-an-1=2,
又4S1=
a21+2a1+1,∴a1=1
∴{an}是以a1=1为首项,d=2为公差的等差数列.
∴an=a1+(n-1)d=2n-1;
(2)由(1)知Sn=
(1+2n−1)n/2=n2,
假设正整数k满足条件,
则(k2)2=[2(k+2048)-1]2
∴k2=2(k+2048)-1,
解得k=65;
(3)证明:由Sn=n2得:Sm=m2,Sk=k2,Sp=p2
于是
1
Sm+
1
Sp−
2
Sk=
1
m2+
1
p2−
2
k2=
k2(p2+m2)−2m2p2
m2p2k2]
∵m、k、p∈N*,m+p=2k,
∴
k2(p2+m2)−2m2p2
m2p