设椭圆的方程为X平方+Y平方/4=1,过M(0,1)的直线交椭圆于AB两点,O为坐标原点,OP向量=1/2(OA向量+O

1个回答

  • E: x^2+y^2/4 = 1 (1)

    M(0,1)

    OP = (1/2)(OA+OB)

    L: passing through M(0,1)

    y = mx +c

    1= c

    ie

    L: y = mx +1 (2)

    Sub (2) into (1)

    x^2 + (mx+1)^2/4 =1

    4x^2 + (mx+1)^2 = 4

    (4+m^2)x^2 + 2mx -3 =0

    Let P be (x,y)

    then

    2x = -2m/(4+m^2) (3)

    from (2)

    y = mx+1

    x = (y-1)/m (4)

    Sub (4) into (1)

    (y-1)^2/m^2 + y^2/4 = 1

    4(y-1)^2 + m^2y^2 = 4m^2

    (4+m^2)y^2 - 8y + 4(1-m^2) =0

    then

    2y = 8/(4+m^2)

    4+m^2 = 4/y

    m = √[4(1-y)/y] (5)

    Sub (5) into (3)

    2x = -2m/(4+m^2)

    x = -√[4(1-y)/y]/ (4/y)

    x^2 = [4(1-y)/y] / [4/y]^2

    = y(1-y)/4

    4x^2 = y(1-y)

    P的轨迹方程:

    4x^2 = y(1-y)