如何求广义积分∫1/x^2*dx,(1,+∞)
1个回答
1/x的导数为-1/x^2
∫1/x^2*dx,(1,+∞)=【-1/x】(1,+∞)
=-0-(-1)=1
相关问题
广义积分∫(0~+∞)dx/1+x^2 dx 怎么求?
求广义积分∫∞ 1/xln x dx
求广义积分∫1/x²(x+1)dx 积分区间为【1,
∫1/√x广义积分(1,0)∫(1/√x)dx广义积分(1,0),
广义积分∫+∞1xe-x2dx=( )
求广义积分∫(1/2~3/2)(√(x-x²)的绝对值)dx
广义积分 ∫(0-1) √ x/ √(1-x)dx
广义积分∫(0→1)x^2(lnx)^2dx=
1到正无穷广义积分1/x^2dx
广义积分∫ln(1-x^2)dx(0到1)