P(x1,y1),Q(x2,y2),有:x1+y1-1=0,x2+y2-1=0 ...(1)
x+y-1=0代入x^2/a^2+y^2/b^2=1,得:
==> (a^2+b^2)x^2-2a^2*x+a^2(1-b^2)=0
x1+x1 =2a^2/(a^2+b^2),x1*x2=a^2(1-b^2)/(a^2+b^2) ...(2)
OP垂直OQ:(y1/x1)(y2/x2)=-1 ...(3)
(1)(2)(3) ==> 1/a^2 +1/b^2 = 2 = 定值 ...(4)
e=c/a=[√(a^2-b^2)]/a =√[1-(b/a)^2]
(√2)/2≥e=√[1-(b/a)^2]≥(√3)/3 ...(5)
(4)(5) ==> (√6)/2≥a≥(√5)/2