(1)证明:
∵∠BDC=∠BEC+∠ACF
∴ ∠BDC=90°+∠ACF ①
又∵CF ┴ AB
∴ ∠A+∠ACF =90° ②
∴ ①式 - ②式,∠BDC -( ∠A+∠ACF )= 90°+∠ACF - 90°
∴ 解得,∠BDC =∠A + 2∠ACF
即 ∠BDC>∠A
∵CF ┴ AB
∴∠A+∠ACF = 90°
∴ 70°+∠ACF = 90°
∴ ∠ACF = 20°
又∵∠BDC =∠A + 2∠ACF (第一问已经证得)
∴ ∠BDC =70° + 2 x 20°
∴ ∠BDC =110°
(3) ∵∠BDC =∠A + 2∠ACF ① (第一问已经证得)
∠A+∠ACF =90° ② (第一问已经证得)
∴将② 式代入①式中得,∠BDC =∠ACF + 90°
∴120° =∠ACF + 90°
∴∠ACF = 30°
又∵∠A+∠ACF =90°
∴∠A = 60°