1+|sin2x|=|sinx|^2+2*|sinx|*|cosx|+|cos|^2=(|sinx|+|cos|)^2
根号(1+|sin2x|)=|sinx|+|cosx|
y=(sinx+cosx)/根号(1+|sin2x|)
=(sinx+cosx)/(|sinx|+|cosx|)
当sinx>0,cosx>0,即x为第一象限角时,y有最大值 :1;
当sinx
1+|sin2x|=|sinx|^2+2*|sinx|*|cosx|+|cos|^2=(|sinx|+|cos|)^2
根号(1+|sin2x|)=|sinx|+|cosx|
y=(sinx+cosx)/根号(1+|sin2x|)
=(sinx+cosx)/(|sinx|+|cosx|)
当sinx>0,cosx>0,即x为第一象限角时,y有最大值 :1;
当sinx