选B 利用复合函数求导法则很容易带出 y'=f'(lnx)*(lnx)'=1/x*f'(lnx)
f''=-(1/x²)*f'(lnx)+1/x*f''(lnx)*1/x
'=-(1/x²)*f'(lnx)+1/x²*f''(lnx)
=(1/x²)[f''(lnx)-f'(lnx)]
每次求复合导数时要将自变量的导数乘上,当自变量为x时其导数为1
选B 利用复合函数求导法则很容易带出 y'=f'(lnx)*(lnx)'=1/x*f'(lnx)
f''=-(1/x²)*f'(lnx)+1/x*f''(lnx)*1/x
'=-(1/x²)*f'(lnx)+1/x²*f''(lnx)
=(1/x²)[f''(lnx)-f'(lnx)]
每次求复合导数时要将自变量的导数乘上,当自变量为x时其导数为1