解题思路:AB+BD=DE,根据线段的垂直平分线的性质可得AB=AC,AC=EC,∵AC+CD=AB+BD,∴EC+CD=AB+BD,即AB+BD=DE.
AB+BD=DE.
理由是:∵AD⊥BC,BD=DC,
∴AB=AC.
又∵点C在AE的垂直平分线上,
∴AC=EC.
∵AC+CD=AB+BD,
∴EC+CD=AB+BD.
即AB+BD=EC+CD=DE.
点评:
本题考点: 线段垂直平分线的性质.
考点点评: 此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.