1、设f(-2)=m f(-1)+nf(1),即
a(-2)²+b(-2)=m[a(-1)²+b(-1)]+n[a+b],化简得
4a-2b=m[a-b]+n[a+b]
4a-2b=(m+n)a-(m-n)b
所以:m+n=4,m-n=2,联立解方程组得
m=3,n=1
所以f(-2)=3f(-1)+f(1),由已知条件得
-3≤3f(-1)≤6,2≤f(1)≤4
二式相加得-1≤3f(-1)+f(1)≤10,即
-1≤f(-2)≤10
2由f(x)>k得2x/(x²+6)>k,分母为x²+6,大于0,不等式两边同乘以x²+6,不等式不变号,即2x>k(x²+6),整理得
kx²-2x+6k