二元函数可微的定义是函数z=f(x,y)在点(x,y)的全增量Δz=f(x+Δx,y+Δy)-f(x,y)可以表示成Δz=AΔx+BΔy+o(ρ).令x=y=0,则全增量Δz=f(Δx,Δy)-f(0,0),将符号Δx,Δy换成x,y来表示,则该题中(x,y)→(0,0)时函数f(x,y)的Δz=f(x,y)-f(0,0)=-2x+y+o(ρ),符合定义的要求,所以f(x,y)在点(0,0)处可微.
证明二元函数可微.设 lim [f(x,y)-f(0,0)+2x-y]/√x^2+y^2=0证明f(x,y)在点(0,0
1个回答
相关问题
-
设函数f(x,y)=x^2y^2/x^4+y^4,(x,y)≠(0,0),则lim(x,y)→(0,0)f(x,y)=
-
设函数y=f(X)在点x0处可导,且f'(X0)=a,则lim(△x->0)(f(x0-2△x)-f(X0))/△x)=
-
抽象函数证明f(x+y)+f(x-y)=2f(x)f(y) f(1)≠0证明为偶函数
-
0,f'(x0)=0,则函数f(x)在点x0某">
设函数y=f(x)是微分方程y"-2y'+4y=0的一个解.若f(x0)>0,f'(x0)=0,则函数f(x)在点x0某
-
微积分:设f(x y)=【(xy)^2】/【(x^2+y^2)^3/2 】证明:f(x y)在点(0 0)处连续且偏导数
-
设函数f(x,y)= xy^2/(x^2+y^4); (x,y)不等于(0,0) 0 ; (x,y)=(0,0) 判断f
-
已知函数f(x)满足f(x+y)+f(x-y)=2f(x)•f(y) (x∈R,y∈R),且f(0)≠0,试证明f(x
-
已知函数f(x)满足f(x+y)+f(x-y)=2f(x)•f(y) (x∈R,y∈R),且f(0)≠0,试证明f(x
-
设方程y=F(x^2+y^2)+F(x+y)确定隐函数y=f(x)(其中F可微),且f(0)=2,F’(2)=1/2,F