解法如下:
∫(1→2)√x*lnxdx
=(2/3)∫(1→2)lnxd x^(3/2) ←使用分部积分法
=(2/3)x^(3/2)lnx(1→2)-(2/3)∫(1→2)x^(3/2)d lnx
=(4√2*ln2)/3-(2/3)∫(1→2)x^(1/2)dx
=(4√2*ln2)/3-(4/9)(2√2-1)
以上答案仅供参考,
解法如下:
∫(1→2)√x*lnxdx
=(2/3)∫(1→2)lnxd x^(3/2) ←使用分部积分法
=(2/3)x^(3/2)lnx(1→2)-(2/3)∫(1→2)x^(3/2)d lnx
=(4√2*ln2)/3-(2/3)∫(1→2)x^(1/2)dx
=(4√2*ln2)/3-(4/9)(2√2-1)
以上答案仅供参考,