2,5,8,...项的分数先倒数来看,
3,6,9项的负数变为正数看规律:
0,2,6,12,20,30,42,56,72
后项减前项:2,4,6,8,10,12,14,16.
所以此为(n-1)n,因此规律为:
A(3n+1)=3n(3n+1)
A(3n+2)=1/[(3n+1)(3n+2)]
A(3n+3)=-(3n+2)(3n+3)
n=0,1,2,3,.
2,5,8,...项的分数先倒数来看,
3,6,9项的负数变为正数看规律:
0,2,6,12,20,30,42,56,72
后项减前项:2,4,6,8,10,12,14,16.
所以此为(n-1)n,因此规律为:
A(3n+1)=3n(3n+1)
A(3n+2)=1/[(3n+1)(3n+2)]
A(3n+3)=-(3n+2)(3n+3)
n=0,1,2,3,.