首先将矩形区域任意分成n个小区域,若每个小区域上任取一点的坐标x或y是有理数时,f(x,y)=1,因此积分和为整个矩形趋于的面积;若每个小区域上任取一点的坐标x或y是无理数时,f(x,y)=0,因此积分和为0;因此,积分和的极限,也就是二重积分不存在,原函数不可积.
当x,y都是有理数时,f(x,y)=1,当x或y是无理数时,f(x,y)=0,证明f(x,y)在任何矩形上不可积
1个回答
相关问题
-
函数y=f(x)对任意x,y属于R都有f(x+y)=f(x)+f(y)-1,当x>0时,f(x)>1,证明f(x)为增函
-
设f(x)是定义在(0,+∞ )上,对任意实数x,y有f(x/y)=f(x)-f(y)当x>1时,f(x)
-
函数f(x)-f(y)=f[(x-y)/(1-xy)],当x,y属于(-1,0)时,f(x)>0.
-
设f(x)是定义在R上的函数,对任意x,y∈R,都有f(x+y)=f(x)×f(y),当且只当x>0时,0<f(x)<1
-
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y),当x>0时,f(x)>0,试判断f(x)在(0,
-
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y),当x>0时,f(x)>0,试判断f(x)在(0,
-
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y),当x>0时,f(x)>0,试判断f(x)在(0,
-
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y),当x>0时,f(x)>0,试判断f(x)在(0,
-
f(x)是定义在R上的函数,对x,y属于R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)
-
f(x+y)=f(x)+f(y),x/y属于R,当x>0时,f(x)>1,求f(x+y)=f(x)+f(y)的单调性.