已知在直角坐标系中,射线OA:x-y=0(x≥0),OB:√3x+3y=0(x≥0),过点P(1,0)作直线分别交射线OA,OB于A,B点 (1)当AB中点为P时,求直线AB的方程 设直线AB方程为: y=k(x-1) 求出它与OA、OB的交点,得 A(k/(k-1),k/(k-1)) B(k/(k+根3/3),-根3*k/(3k+根3)) 因为P是A、B的中点,所以A、B的纵坐标互为相反数,所以 k/(k-1)=根3k/(3k+根3) 解得 k =-根3-1 所以AB的方程为: y=-(根3+1)x+根3+1
在直角坐标系中,已知射线OA:x-y=0(x≥0),OB:(√3)×3+3y=0(x≥0),过点P(1,0)作直线分别交
1个回答
相关问题
-
在直角坐标系中,已知射线OA:x-y=0(x≥0),OB:√3 x+3y=0(x≥0),过点P(1,0)作直线分别交射线
-
在平面直角坐标系中,已知射线OA:x-y=0(x≥0),OB:√3x+3y=0(x≥0),过点P(1,0)作直线交射线O
-
平面直角坐标系中,已知射线OA:x-y=0(x≥0),OB:x+2y=0(x≥0)过点P(1,0)作直线分别交射线OA,
-
(高一数学)在平面直角坐标系中,已知射线OA:x-y=0(x≥0),OB:√3x+3y=0(x≥0)
-
高三直线与圆OA:x=y(x>0) OB:x+(根号3)y=0(x>0) 过点P(a,0)(a>0)作直线L分别交射线O
-
如图9-3,已知:射线OA为y=kx(k>0,x>0),射线OB为y= -kx(x>0),动点P(x,
-
已知射线OA为y=Kx(k>0,X>0),射线OB为y=-kx(x>0),动点p(x,y)在∠AOX内部,PM⊥OA于M
-
已知点P在直线x+2y-1=0上,点Q在直线x+2y+3=0上,P,Q中点为M(x0,y0),且y0>x0+2,求y0/
-
已知点P在直线x+2y-1=0上,点Q在直线x+2y+3=0上,P,Q中点为M(x0,y0),且y0>x0+2,求y0/
-
从坐标原点O作射线,交直线x=3于点6(3,y0),P(x,y)为射线上的点且OM*OP=12(1)求证y0/3=y/x