设AB:y=k(x+2)
设A(x1,y1),B(x2,y2),
C(x3,y3),D(x4,y4)
∴ AM的方程是y=[y1/(x1-1)](x-1)
设 k0=y1/(x1-1)
则 AM:y=k0(x-1)
与抛物线方程联立
∴ k0²(x-1)²=4x
∴ k0²-(2k0²+4)x+k0²=0
利用韦达定理
x3*x1=1
∴ x3=1/x1
∴ y3=k0(x3-1)=[y1/(x1-1)]*[1/x1-1]=-y1/x1
即 M(1/x1,-y1/x1)
同理 N(1/x2,-y2/x2)
∴ k(MN)=(-y1/x1+y2/x2)/[1/x1-1/x2]
=[-y1x2+x1y2]/(x2-x1)
=[-k(x1+2)x2+k(x2+2)x1]/(x2-x1)
=k(2x2-2x1)/(x2-x1)
=k*2
∴ K(MN)/k(AB)=2
即 k(MN)/k(AB)=2
∴ k1/k2=2
∴ k1/k2是定值,为2
抱歉,原来的解答最后的几步输入错误,重新改动了.