2×4×6×8+16=400,
4×6×8×10+16=1936,
6×8×10×12+16=5776,
……
(1)从上面的计算过程中,你发现了什么规律?
(2)请用含有字母n的代数式表示这一规律,并说明它的正确性.
归纳:
(1) 2×4×6×8+16=400=(4+2*8)^2
(2)4×6×8×10+16=1936=44^2=(4+2*8+3*8)^2
(3)6×8×10×12+16=5776=76^2=(4+2*8+3*8+4*8)^2
(4)8×10×12×14+16=116^2=(4+2*8+3*8+4*8+5*8)^2
(5)10×12×14×16+16=164^2=(4+2*8+3*8+4*8+5*8+6*8)^2
猜想
(n) (2n)×(2n+2)×(2n+4)×(2n+6)+16=[4+2*8+3*8+4*8+5*8+6*8+...+(n+1)*8]^2
=[4+8n(n+3)/2]^2
=(4+4n^2+12n)^2
=4^2*[(n^2+3n)*(n^2+3n+2)+1]^2
=4^2*(n^2+3n+1^2
推导
(2n)×(2n+2)×(2n+4)×(2n+6)+16=4^2*n*(n+1)*(n+2)*(n+3)+4^2
=4^2*[n*(n+1)*(n+2)*(n+3)+1]
=4^2*[n*(n+3)*(n+1)*(n+2)+1]
=4^2*[(n^2+3n)*(n^2+3n+2)+1]
=4^2*[(n^2+3n)*(n^2+3n+2)+1]
=4^2*[(n^2+3n)^2+2*(n^2+3n+1]
=4^2*(n^2+3n+1)^2