初一因式分解和乘法公式数学题2×4×6×8+16=400,4×6×8×10+16=1936,6×8×10×12+16=5

2个回答

  • 2×4×6×8+16=400,

    4×6×8×10+16=1936,

    6×8×10×12+16=5776,

    ……

    (1)从上面的计算过程中,你发现了什么规律?

    (2)请用含有字母n的代数式表示这一规律,并说明它的正确性.

    归纳:

    (1) 2×4×6×8+16=400=(4+2*8)^2

    (2)4×6×8×10+16=1936=44^2=(4+2*8+3*8)^2

    (3)6×8×10×12+16=5776=76^2=(4+2*8+3*8+4*8)^2

    (4)8×10×12×14+16=116^2=(4+2*8+3*8+4*8+5*8)^2

    (5)10×12×14×16+16=164^2=(4+2*8+3*8+4*8+5*8+6*8)^2

    猜想

    (n) (2n)×(2n+2)×(2n+4)×(2n+6)+16=[4+2*8+3*8+4*8+5*8+6*8+...+(n+1)*8]^2

    =[4+8n(n+3)/2]^2

    =(4+4n^2+12n)^2

    =4^2*[(n^2+3n)*(n^2+3n+2)+1]^2

    =4^2*(n^2+3n+1^2

    推导

    (2n)×(2n+2)×(2n+4)×(2n+6)+16=4^2*n*(n+1)*(n+2)*(n+3)+4^2

    =4^2*[n*(n+1)*(n+2)*(n+3)+1]

    =4^2*[n*(n+3)*(n+1)*(n+2)+1]

    =4^2*[(n^2+3n)*(n^2+3n+2)+1]

    =4^2*[(n^2+3n)*(n^2+3n+2)+1]

    =4^2*[(n^2+3n)^2+2*(n^2+3n+1]

    =4^2*(n^2+3n+1)^2